Electron Microburst Size Distribution Derived with AeroCube-6
Published in Journal of Geophysical Research, 2020
Abstract: Microbursts are an impulsive increase of electrons from the radiation belts into the atmosphere and have been directly observed in low Earth orbit and the upper atmosphere. Prior work has estimated that microbursts are capable of rapidly depleting the radiation belt electrons on the order of a day; hence, their role to radiation belt electron losses must be considered. Losses due to microbursts are not well constrained, and more work is necessary to accurately quantify their contribution as a loss process. To address this question, we present a statistical study of >35 keV microburst sizes using the pair of AeroCube-6 CubeSats. The microburst size distribution in low Earth orbit and the magnetic equator was derived using both spacecraft. In low Earth orbit, the majority of microbursts were observed, while the AeroCube-6 separation was less than a few tens of kilometers, mostly in latitude. To account for the statistical effects of random microburst locations and sizes, Monte Carlo and analytic models were developed to test hypothesized microburst size distributions. A family of microburst size distributions were tested, and a Markov chain Monte Carlo sampler was used to estimate the optimal distribution of model parameters. Finally, a majority of observed microbursts map to sizes less than 200 km at the magnetic equator. Since microbursts are widely believed to be generated by scattering of radiation belt electrons by whistler mode waves, the observed microburst size distribution was compared to whistler mode chorus size distributions derived in prior literature.
Recommended citation: Shumko, M., Johnson, A. T., Sample, J. G., Griffith, B. A., Turner, D. L., O'Brien, T. P., et al. (2020). Electron microburst size distribution derived with AeroCube-6. Journal of Geophysical Research: Space Physics, 125, e2019JA027651. https:// doi.org/10.1029/2019JA027651